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 This paper calculates the CO
2
 equivalents footprint of private

consumption in the India by five groups of household income, using a
fully fledged macroeconomic input-output model covering 59 industries
and f ive groups of  household income for the India. Due to
macroeconomic feedback mechanisms, this methodology not only takes
into account intermediate demand induced by the demand of a
household group, but also: (i) private consumption induced in the other
household groups, (ii) impacts on other endogenous final demand
components, and (iii) negative feedback effects due to output price
effects of household demand. Direct household emissions from
household energy consumption are taken into account in a non-linear
specification. Emissions embodied in imports are calculated using the
results of a static MRIO (Multi-Regional Input-Output) model. The
footprint is calculated separately for the consumption vector of each of
the five income groups. The simulation results yield an income elasticity
of direct and indirect emissions at each income level that takes all
macroeconomic feedbacks of consumption into account and differs from
the ceteris paribus emission elasticity in the literature. The results further
reveal that a small structural ‘Kuznet effect’ exists.

Carbon footprint, Computable General Equilibrium (CGE)
modeling, Income distribution, India.

 C67, Q52, Q54

The environmental impact of inequality in the income distribution has been
the object of many theoretical and empirical studies. The main question was, if
reducing inequality and rising incomes along the growth process might
‘automatically’ decrease environmental pressure. The ‘strong’ version of this
hypothesis where environmental pressure (emissions, energy/resource use) is
even reduced when the schedule of all household incomes shifts upwards, is the
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‘Environmental Kuznets Curve’ (EKC). The general result of empirical studies
at the national level is that some decrease in environmental pressure can be
identified, but that does not suffice to reduce environmental pressure. The
empirical studies comprise econometric studies in the spirit of the EKC literature
(Ravaillon, et al. 2020, Borghesi, 2020) as well as studies that combine input-
output (IO) or life-cycle methods with others to quantify the footprint of
different income groups (Weber and Matthews, 2007, and more recently Chancel
and Piketty, 2015).

Since the seminal paper of Boyce (2014), most authors find a negative
relationship between inequality and emissions, i.e. higher inequality leads to
lower emissions. The ECK studies also include cross terms between indicators
of inequality (Gini index) and aggregate income, allowing for a change in the
emission elasticity of income growth in the case of changes in the income
distribution. Borghesi (2020) discusses these findings in the light of the literature
and concludes with mixed evidence: positive effects of inequality on emissions
(poor households using less efficient equipment and more energy/resources)
and negative effects (rich households consuming more aggregate energy/
resources) might balance.

The studies that use input-output (IO) analysis for calculating the footprint
usually calculate direct and indirect emissions of households, and often yield
the result that indirect emissions have a higher share in total footprint for high
income households than for low income. This is seen to be due to the fact that
there is a minimum as well as a maximum need of direct energy for heating,
lighting and transport, but consumption of other energy intensive goods increases
with income and therefore indirect emissions. Parikh et al. (2019) as well as
Weber and Matthews (2007) show that for top income households the share of
indirect CO

2
e (CO

2
 equivalents, i.e. (GHG emissions, including CH

4
 and N

2
O)

emissions is significantly higher than for households at the bottom of the income
distribution.

One objective of the literature consists in deriving an income elasticity of
carbon emissions, either from a cross section or an aggregate time series data
set. Weber and Matthews (2007), who combine IO analysis with econometric
estimation, find expenditure elasticity between 0.6 and 0.8 and income elasticity
between 0.35 and 0.52. Lenzen et al. (2016) review this work on elasticities
and derive a similar range, but conclude that the literature exhibits a large
heterogeneity of estimated elasticity values. It must be noted that the
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methodology consists of calculating the CO
2
e footprint in a first step and then

applying econometric analysis on these results in a second step. The econometric
analysis, which attempts to identify the households’ reactions, therefore is not
integrated with the IO analysis used for calculating the footprint. Another study
(Duarte et al., 2015) also uses a Computable General Equilibrium (CGE)  model
to calculate the full macroeconomic impact of household behaviour, but the
consequences for emissions are attributed from outside from the results of an
IO model (though the IO database is the same as the one for the CGE model).
The recent study by Chancel and Piketty (2015) combines footprint calculations
from a MRIO analysis with income distribution data via income elasticity values
taken from the literature.

The existing literature has not yet used IO approaches that integrate
household behavior for deriving the footprint of different income groups,
from which the income elasticity can be derived directly, without any further
econometric analysis. This paper attempts to fill this gap and the income
elasticity derived takes into account macroeconomic (or general equilibrium)
feedbacks and therefore is not limited to the ceteris paribus condition that
needs to hold for the elasticity values estimated in the literature. The model
used can be seen as a hybrid between an econometric IO and a CGE model
and splits the consumption block into five groups of household income
(quintiles). Aggregate consumption depends on income, wealth and liquidity
constraints, consumption by commodity on prices as well. Production is
modeled via a Translog model that is fully integrated into the IO structure.
Besides that, the model also comprises a labor market block (wage curves)
and a public sector block that closes the model via a fixed deficit/GDP rule.
The analysis in this paper extends the existing literature by taking into account
that (i) consumption of each household group induces consumption in the
other groups via an income and wealth multiplier, (ii) consumption of each
household group induces wage and price effects due to the demand pull, and
(iii) consumption of durables reacts in a non-linear form, so that energy
consumption linked to the durable stock shows non-linear reactions with
respect to income as well.

These effects partly magnify the footprint compared to traditional static
IO analysis ((i)) and partly diminish it ((ii)). The non-linear property ((iii))
yields a heterogenous income elasticity of the footprint across income groups.
This is an ex post elasticity from model simulation results, taking into account
all macroeconomic feedbacks.
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The paper is organized as follows: section 2 describes the model with an
emphasis on consumption, production and trade, including the derivation of
direct and indirect household CO

2
e footprint. Section 3 reports the results for

the CO
2
e footprint by quintile and calculates the model simulation income

elasticity. The values of this elasticity define the reaction of the CO
2
e footprint

when ascending from one quintile to the next and are not constant and different
from the range found in the literature. The income elasticity of the CO

2
e

footprint considerably decreases when moving from bottom to top income.
Another interesting result is that when macroeconomic feedbacks are taken
into account (additionally to pure IO linkages), indirect effects are more
important for bottom income households than for top incomes. The results
indicate a small ‘Kuznet effect’, partly due to a higher saving rate and less emission
intensive consumption structures of top incomes. This effect results in a less
than proportionate rise of the CO

2
e footprint with a rise in income, which

though does not suffice to compensate for the much higher level of consumption
of top incomes. In section 4 some conclusions are drawn.

The DYNK (DYnamic New Keynesian) model approach applied in this study
is a hybrid between an econometric IO and a CGE model and is characterized
by the integration of rigidities and institutional frictions. In the long run the
model works similar to a CGE model, and explicitly describes an adjustment
path towards a long-run equilibrium. The term ‘New Keynesian’ refers to the
existence of a log-run full employment equilibrium, which will not be reached
in the short run, due to institutional rigidities. These rigidities include liquidity
constraints for consumers (deviation from the permanent income hypothesis),
and wage bargaining (deviation from the competitive labour market). The model
describes the inter-linkages between 59 industries as well as the consumption
of five household income groups by 47 consumption categories and covers the
India.

The model of households’ demand comprises three nests, where in the first
nest the demand for durables (owned houses, vehicles) and total nondurables is
derived from a buffer-stock model of consumption. The second nest links energy
demand (in monetary and physical units) to the durable stock (houses, vehicles,
appliances) taking into account the energy efficiency embodied in the stocks.
Direct CO

2
e emissions of households are derived from the energy flows

determined in this nest. In the third nest eight categories of non-energy



A New Static Multi-Regional Input Output Model for Household Behavior of India  | 63

nondurable demand are determined in a flexible demand system (The Almost
Ideal Demand System (AIDS) model) and then further be split up into 47
categories via fixed shares. The model of production links the input-output
structures (Leontief technologies) of 59 domestic and imported inputs to a
Translog model with K, L, E, Mm (imports) and Md (domestic) factors. The
factor energy (E) is further split up into 26 types of energy, from which CO

2
e

emissions of production are derived, a part of which constitutes the domestic
indirect CO

2
e emissions of households. The imported indirect CO

2
e emissions

of households are taken from simulation results with a MRIO model (Arto et
al., 2014). The labour market is specified via wage curves, where wage increases
by industry depend on productivity, the consumer price and the distance to full
employment. The model is closed by endogenizing parts of public expenditure
in order to meet the midterm stability program for public finances in the India.

The consumption block differentiates between different stages and separability
is assumed between these stages. The separability assumption in that context
also implies that the dynamic decision process is disentangled as lined out in
Attanasio and Weber (2005).

At the first stage, the demand for durables (real estate property and vehicles)
is modeled in a way consistent with the version of the buffer stock model
described in Luengo-Prado (2016). Further, total nondurable demand is also
specified in a way consistent with the main properties of the buffer stock model
(excessive smoothing, excess sensitivity). All model parameters are based on
dynamic estimation of panel data for India (2005-2021).

At the second stage, energy consumption, disaggregated into: heating,
electricity and fuels for transport, is modeled as a service demand in terms of
utilization of the capital (durable) stock. An important variable is the average
energy efficiency of the corresponding durable stocks (dwelling for heating,
vehicles for fuels for transport, and appliances for electricity). The transport
part allows for substitution between public transport services and private car
transport. For this second stage, the model parameters are based on estimations
with in India (2005 – 2021).

Finally, the third stage contains the model of non-energy nondurable
consumption, modeled in a demand system. This is again split into two nests:
(i) an aggregate level of eight categories, described in an The Almost Ideal
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Demand System (AIDS) model, and (ii) a detailed model of 47
The Classification of Individual Consumption According to Purpose
(COICOP) categories, explained by sub-shares of the aggregate categories that
change over time and can be changed exogenously for model simulation
purposes. The econometric estimation has been carried out for in India (2005
– 2021), as well as for data from the household survey 2020/2021 for India.

2.1.1. Durable demand and total nondurables

Starting point for determining total private consumption is the buffer-stock
model, developed by Deaton (2021) and Carroll (2017). We apply a
specification, where buffer-stock saving is not motivated by income uncertainty,
but by down payments for purchase of durables, as laid down in Luengo-Prado
(2016). Consumers maximize the present discounted value of expected utility
from consumption of nondurable commodity and from the service provided
by the stocks of durable commodity:

� �
�
�
�

�
�
�

� �
�

�
tt

t

t

KC
KCUEV

tt

,max
0

0
),(

� (1)

Specifying a The constant-relative-risk-aversion  (CRRA) utility function
and a budget constraint the model can be solved in terms of first order conditions,
but not in terms of explicit demand functions. The budget constraint in this
model without adjustment costs for the durables stock is given by the definition
of assets, A

t
:

� � � �� �11 1)1(1 �� �������� tttttrt KKCYDAtrA � (2)

In (2) the sum of tC  and � �� �11 ��� tt KK �  represents total consumption,

i.e. the sum of nondurable and durable expenditure (with depreciation rate of
the durable stock, d). The gross profit income rA

t-1
 (with interest rate r) is taxed

with tax rate t
r
. Disposable household income excluding profit income, YD

t
, is

given as the balance of net wages � � ttYS Hwtt ��1  and net operating surplus

accruing to households thYt ,)1( �� , plus transfers Trr
t
:

� � tthYttYSt TrtHwttYD ������� ,)1(1 (3)

The following taxes are charged on household income: social security
contributions with tax rate t

S
, which can be further decomposed into an employee
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and an employer’s tax rate (t
Wl 

and t
L
) and income taxes with tax rate t

Y
. The

wage rate w
t
 is the wage per hour and H

t
 are total hours demanded by firms.

Wage bargaining between firms and unions takes place over the employee’s
gross wage, i.e. w

t
 (1 - t

L
).

All the income categories are modelled at the level of quintiles q of household
incomes (q = 1…5):

� �� �� �������
q

qtqtqYqtqtqYqSt TrtHwttYD ,,,,,,, )1(1 (4)

Financial assets of households are built up by saving after durable purchasing
has been financed, and the constraint for lending is:

� � 01 ��� tt KA � (5)

This term represents voluntary equity holding, as the equivalent of the other
part of the durable stock (�K

t
) needs to be held as equity. The consideration of

the collateralized constraint is operationalized in a down payment requirement
parameter �, which represents the fraction of durables purchases that a household
is not allowed to finance. One main variable in the buffer stock-model of
consumption is ‘cash on hand’, X

t
, measuring the household’s total resources:

X
t
 = (1 + r

t
)(1 – t

r
)A

t-1
 + (1 - �)K

t-1
 + YD

t
. The model is specified here in the form

of demand functions that are consistent with the model properties. These
comprise non-linear consumption functions for durables, which are based on
the concave shape of the policy functions for consumption in Luengo-Prado
(2016), and where, with higher levels of durables per households (K

t
/h

t
), the

marginal propensity of investment in durables, C
Kt

 with respect to X
t
 decreases.

The down payment parameter q in Luengo-Prado (2016) represents a long-
term constraint between the liabilities stock and the durable stock of households
and is specified here by imposing limits to the down payment for durable
purchases. Durables in this model are owned houses (dwelling investment) and
vehicles. The long-run demand functions for the two durable categories (C

dur,t
)

is a function of ‘cash on hand’ (X
t
), the down payment for durable purchases

(�
Ct

), as well as static user costs of durables, p
dur,t

(r
t
 + �)

� � � �� �11,,, /log,)(log,,logloglog ���� ttttdurCtttdurtdur hKrpXCC �� (6)

The long-run demand function for total nondurable consumption is a
function of ‘cash on hand’ and down payments for durable purchases

( tdurCt C ,log� )
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� �tdurCtttnondurtnondur CXCC ,,, log,logloglog �� (7)

The latter takes into account that households need to finance down
payments, and will not do so by savings in the same period but will smooth
nondurable consumption accordingly. The estimation is carried out as error
correction panel data estimation and the results are used to calibrate the model
at the level of the 5 quintiles of income, which are characterized by different
values for the durable stocks per household. Therefore, the model contains
growth rates for C

dur,t
 and C

nondur,t
 for each quintile (q).

The data for the estimation of consumption demand functions are mainly
taken from India’s National Accounts. The capital stock of housing property
was estimated for one year, based on the Household Financial and Consumption
Survey (HFCS) of the India. A more simple procedure could be applied to
vehicles, as the expenditure data are available and no revaluation of the existing
stock needed to be taken into account there.

The down payment for durable purchases, �
Ct

 is calculated by relating the
change in liabilities to the durable demands. The original �

t
 from Luengo-

Prado (2016) is measured in this model by the relationship (1 – liabilities/
durable stock) and can only be controlled by fixing certain values of �

Ct
 and

solving the model to derive the path of �
t
. In an iterative procedure dynamic

convergence towards target values of �
t
 can then be achieved.

Once the full model is set up with the integrated consumption block, the
property of ‘excess sensitivity’ can be tested. Excess sensitivity describes the
empirical fact that the growth rate of consumption – partly – reacts to the
lagged growth rate of disposable (or labour) income. This issue has been raised
by Hall (2018) and confronted the Permanent Income Hypothesis with
contradicting empirical findings. The full model presented here is run until
2050, so that endogenous disposable household income is generated. Then
excess sensitivity is tested by setting up the regressions that Hall (2018)
proposed to test the influence of transitory income shocks on consumption.
That means regressing the growth rates for C

dur,t
 and C

nondur,t
 for each quintile

(q) on lagged disposable income growth (without profit income) for each
quintile, generated by the full model. Profit income is not included, because
it is endogenous and depends on equity built up, which in turn is a result of
the inter-temporal optimization. Luengo-Prado (2016) also carries out excess
sensitivity tests with her calibrated model, based on US household survey
data and confronts these results with US stylized macroeconomic facts. The
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excess sensitivity coefficients, i.e. the marginal propensity of consumption
(MPC) with respect to lagged income change, found by Luengo-Prado (2016)
are 0.16 (nondurables) and 0.26 (durables). The results from the model
solution until 2050 (Table 1) clearly reveal that for the 5th and partly for the
4th quintile durable and nondurable consumption do not statistically
significantly depend on transitory income shocks. The MPC is higher in
general for lower income households and for situations with higher liquidity
constraints (higher �). The ‘low � scenario’ corresponds to a financial regime,
where the relationship debt to durable stock does not significantly decrease,
i.e. no major debt deleveraging by households occurs. The ‘high � scenario’
corresponds to debt deleveraging so that the relationship debt to durable stock
in the long-run decreases to its values before 2020, i.e. before the main
expansion of household debt began. The multiplier of policies that influence
income is therefore not constant, but depends on the situation of the economy
and the income groups that are most affected.

2.1.2. Energy demand

The energy demand of households comprises fuel for transport, electricity and
heating. These demands are part of total nondurable consumption and
separability from non-energy nondurable consumption is assumed. According
to the literature on the rebound effect (e.g.: Khazzoom, 1989), the energy
demand is modeled as (nominal) service demand and the service aspect is taken
into account by dealing with service prices. The durable stock of households
(vehicles, houses, appliances) embodies the efficiency of converting an energy
flow into a service level S = �

ES
 E, where E is the energy demand for a certain

fuel and S is the demand for a service inversely linked by the efficiency parameter
(�

ES
) of converting the corresponding fuel into a certain service. For a given

conversion efficiency, a service price, p
S
, (marginal cost of service) can be

derived, which is a function of the energy price and the efficiency parameter:
p

S
 = p

E 
/��

ES
 . Any increase in efficiency leads to a decrease in the service price

and thereby to an increase in service demand (‘rebound effect’).

For transport demand of households we take substitution between public
(C

pub
) and private transport (C

fuel
) into account. The price for fuels, pc

S,fuel
 , is

defined as a service price. Total transport demand of households depends on
the composite price of private and public transport, as well as on total nondurable
expenditure. The demand for transport fuels is linked to the vehicle stock and
depends on the service price of fuels as well as on the endowment of vehicles of
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the population. The latter term is important because the second car of the
household usually is used less in terms of miles driven than the first.

��
�

�
��
�

�
��
�
�

�
�
�
�

�
����

�

�
��
�

�

t

tveh
fuel

tfuel

tfuel
fuelfuel

tveh

tfuel

h

Kp

K

C ,

,

,

,

, logloglog �
�

�� (8)

In (8) m
fuel

 is a constant or a cross section fixed effect and g
fuel

 is the price
elasticity under the condition that there is a unitary elasticity of fuel demand to
the vehicle stock.

The equations for heating and electricity demand are analogous to equation
(8) and have the following form:

� �heatheat
theat

theat
heatheat

thous

theat dd
p

K

C
logloglog

,

,

,

, �
�

�� ��
�
�

�
�
�
�

�
���

�
�

�
�
�
�

�
(9)

� �heatel
tel

tel
elel

tapp

tel dd
p

K

C
logloglog

,

,

,

, �
�

�� ��
�
�

�
�
�
�

�
���

�
�

�
�
�
�

�
(10)

In both equations the variable heating degree days dd
heat

 is added. The durable
stocks used are the total housing stock (K

hous,t
) and the appliance stock (K

app,t
).

The latter is accumulated from consumption of appliances, C
app

, which in turn
is explained in a log linear specification like total transport demand. The energy
expenditure of households is based on The Central Statistics Office (CSO), the
Energy Accounts from the WIOD database, as well as IEA Energy Prices. Energy
efficiency for electricity and for heating is calculated from the ODYSSEE
database. Efficiency of the car fleet is taken from a revised version of the GAINS
project database. The panel data set resulting from this data collection process
comprises from India. All equations have been estimated in a dynamic
autoregressive distributed lag (ADL) specification. The price elasticity values
(Table 2) found here for heating, transport fuel and electricity (around – 0.8)
are outside the range established by the existing literature for the energy price
elasticity. That can be explained by two factors. First, the elasticity values
presented here measure the service price elasticity and the reaction of service
demand to both price changes and improvements of energy efficiency in the
durable stock. Service price have been almost constant in the sample period
used for estimation due to energy efficiency improvements, whereas demand
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has increased considerably. This is consistent with part of the literature on the
(price) rebound effect that finds rebound effects of 100% in some cases. Second,
the elasticity values calculated here are conditional on the stock of durables
thereby implicitly assuming a unitary elasticity of energy demand to the durable
stock as a strong driving force of demand (Table 2). Again, the estimation results
have been taken to calibrate the model for energy demand by quintile (q). The
model therefore comprises C

fuel
, C

heat
, and C

el
 at the level of quintiles, taking

into account the endowment of each quintile with durable stocks.

2.1.3. Nondurable (non-energy) demand

The non-energy demand of nondurables is treated in a demand system. The
one applied in this DYNK model is the Almost Ideal Demand System (AIDS),
starting from the cost function for C(u, p

i
), describing the expenditure function

(for C) as a function of a given level of utility u and prices of consumer goods,
p

i
 (see: Deaton and Muellbauer, 1980) . The AIDS model is represented by the

well known budget share equations for the i nondurable goods in each period:

� �
�
�

�
�
����

j
ijijii P

C
pw loglog ���  ; i = 1...n, 1...k (11)

with price index, P
t
, defined by � �����

i i j
jtitijitit pppP loglog5.0loglog 0 ��� ,

often approached by the Stone price index: ��
k

ititt pwP loglog *

.The

expressions for expenditure (�
i
) and compensated price elasticities (

C
ij� ) within

the AIDS model for the quantity of each consumption category C
i
 can be written

as (the details of the derivation can be found in Green, and Alston, 2020):

1
log

log
��

�
�

�
i

ii
i wC

C �
� (12)

jiij
i

jiij

j

iC
ij w

w

w

p

C
��

��
� ��

�
�

�
�

�
log

log
(13)

In (13) �
ij
 is the Kronecker delta with �

ij
 = 0 for i � j and �

ij
 = 1 for i = j.

The commodity classification i = 1...n in this model comprises the n non-
energy nondurables: (i) food, and beverages, tobacco, (ii) clothing, and footwear,
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(iii) furniture and household equipment, (iv) health, (v) communication, (vi)
recreation and accomodation, (vii) financial services, and (viii) other
commodities and services.

The data for econometric estimation are taken from The Central Statistics
Office (CSO) National Accounts (2005 – 2021) for the panel data model and
from Indian household surveys 2020/2021 for the cross section model (Salotti,
et al., 2015). For the cross section model no price variance across time is available
and therefore the AIDS model reduces to the simple specification in that case:

�
�
�

�
�
���

P

C
w iii log��  ; i = 1...n, 1...k (14)

This model can still be used to derive expenditure elasticity according to
(12).

The main results of the estimation of the demand system for non-energy
nondurables are the expenditure elasticity from both models (panel and cross
section) and the price elasticity from the panel data model (Table 2). The price
elasticity shows considerable heterogeneity across categories. For the expenditure
elasticity values the results of both models differ considerably. While the
expenditure elasticity of the panel data model is mainly distributed around
unity, the expenditure elasticity of the cross section model differs largely between
categories.

The model has been calibrated starting with the elasticity values reported
in Table 2 by combining the price elasticity with the expenditure elasticity of
the cross section model. This is done by inverting equation (12) and (13) and
inserting the budget shares of the India (one economy) and yields parameter
values for �

i
 and �

ij
.

2.1.4. Total household demand

The household model described determines in three stages the demand for different
categories of durables, energy demand and different categories of nondurables.

The first stage yields (column) vectors of total nondurable consumption � �nondurc

and of investment in owned houses � �housc  and in vehicles � �vehc  by quintile (q).

From the second stage one derives (column) vectors of fuel, heat, and electricity

consumption, again by quintile (q): fuelc , heatc , and elc .
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Nondurable non-energy consumption (the vector by quintiles) is then given
by:

elheatfuelnondurNE ccccc ���� (15)

The matrix of commodities of non-energy consumption by quintiles (
j
) is

in a next step derived from multiplying the matrix of budget shares by quintiles,
, determined in equation (11), with the vector of nondurable non-energy

consumption (converted into a diagonal matrix):

� �NEj ĉWC � (16)

where j = 1...8 are the eight non-energy consumption commodities.

The final result of this procedure is a matrix of durable, energy and non-
energy consumption by quintiles (

C
):

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

�

..........
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..........
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...

...
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5,1,

5,1,

5,1,

5,1,

5,1,

5,1,

C

jj

elel

heatheat

fuelfuel

vehveh

houshous

cc

cc

cc

cc

cc

cc

C

This matrix is then transformed into a consumption matrix by commodities
of the input-output core in the DYNK model and quintiles in purchaser prices,

pp
, by applying the bridge matrix, 

C
:

pp
 = 

C
 

C
(17)

The bridge matrix links the classification of consumption commodities
(COICOP) to the industry classification of the DYK model. The consumption
vector in purchaser prices and industry classification is derived by summing up
over 

pp
: 

pp
 = 

pp
 with  as the diagonal matrix (per quintiles) of the unity

vector.
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This vector is then split up into a domestic and imported part for each
commodity (see section 2.3 on trade) and converted into producer prices by
reallocating trade and transport margins to the corresponding industries and
subtracting taxes less subsidies. That yields the vectors of total domestic ( d)
and imported ( m) consumption, with  = d + m, all valued at producer prices.
For this conversion a matrix of net tax rates (with identical tax rates on domestic
and imported commodities) is applied.

2.1.5. Direct CO
2
e footprint of households

The two directly emission relevant energy categories (fuel and heating) of the
model of energy consumption need to be directly linked to the energy accounts
by user (59 industries plus households) and detailed fuel category (26) in physical

units. This is done in two several steps. First, the vector �
�

�
�
�

�

heat

fuel

c

c
 is deflated byy

aggregate prices of fuels and heating, where these energy prices are not specified
as deflators, but as monetary values per physical energy unit (TJ). Then the
deflated categories, in energy units, are allocated to the 26 energy types (e) of
the model by applying fixed sub-shares, s

ef
. The aggregate prices used for the

first step (for fuel and heating, p
f
) are defined by the exogenous prices by energy

type (p
e
) and the corresponding sub-shares: ��

e
eeff psp . This gives a matrix

of direct energy consumption of households by type of energy (e) and quintile

(q), whose elements are defined as 
f

qf
qefqe p

c
sc ,

,, � :

�
�
�
�

�

�

�
�
�
�

�

�

�

5,261,26

5,11,1

e

......

..........

..........

......

ee

ee

cc

cc

C

Applying a (row) vector of fixed CO
2
 emission factors per unit of energy

type (
GHG,e

) to the physical energy consumption by energy type and quintile
finally yields the (row) vector of direct CO

2
 emissions of household consumption

by quintile 
GHG,q

:
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� �eeGHG,qGHG, CemEM � (18)

The production side in the DYNK model is analysed within the cost and factor
demand function framework in a Translog specification with constant returns
to scale and perfect competition. Autonomous technical change is specified for
all input factors (i.e. the factor biases) and also as the driver of TFP (total factor
productivity).

2.2.1. Substitution in a K,L,E,Mm,Md model

The model is set up with inputs of capital (K), labor (L), energy (E), imported
(Mm) and domestic non-energy materials (Md), and their corresponding input

prices Kp , Lp , Ep , Mmp  and Mdp . Each industry faces a unit cost function for

the price (p
Q
) of output Q, with constant returns to scale

� � � ��� �������
ji i

ititttjiij
i

iii
i

iiQ ptttppppp
,

22
0 )log(

2

1
)log()log()log(

2

1
)log(log �������

(19)

where p
Q
 is the output price (unit cost), p

i
, p

j
 are the input prices for input

quantities x
i
, x

j
, and t is the deterministic time trend, TFP is measured by t� ,

and tt� . Shepard’s Lemma yields the cost share equations in the Translog case,

which in this case of five inputs can be written as:

� �tppppppppv tKMdMmKMMdEKEMdLKLMdKKKKK ������ ������ )/log()/log()/log()/log(

� �tppppppppv tLMdMmLMMdELEMdKKLMdLLLLL ������ ������ )/log()/log()/log()/log(

� �tppppppppv tEMdMmEMMdLLEMdKKEMdEEEEE ������ ������ )/log()/log()/log()/log(

� �tppppppppv tMMdEEMMdLLMMdKKMMdMmMMMM ������ ������ )/log()/log()/log()/log(

(20)

The homogeneity restriction for the price parameters �
i

ij�  = 0, �
j

ij� = 0

has already been imposed in (20), so that the terms for the price of domestic

intermediates Mdp  have been omitted. The immediate ceteris paribus reaction

to price changes is given by the own and cross price elasticity. These own- and
cross- price elasticities for changes in input quantity x

i
 are given as:
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�
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log
(22)

Here, the v
i
 represent the factor shares in equation (19), and the �

ij
 the

cross-price parameters. The rate of factor bias, i.e. the impact of t on factor x
i

without taking into account TFP is given by:

i

tii

vdt

xd �
�

log
(23)

Factor prices are exogenous for the derivation of factor demand, but are
endogenous in the system of supply and demand. Some factor prices are directly
linked to the output prices p

Q
 which are determined in the same system. All

user prices are the weighted sum of the domestic price pd and the import price,
pm. The import price of commodity i in country s is given as the weighted sum

of the commodity prices of the k sending countries ( kdp , ). Once the (user

specific) import prices for intermediate goods are given, the price vectors of
total domestic (

Md
) and imported (

Mm
) intermediate inputs by industry can

be calculated. Within the bundle of intermediate inputs (Mm and Md), which
comprises 55 non-energy industries/commodities, Leontief technology is

assumed. These bundles are defined by the ‘use structure matrices’ ( m
NES and

d
NES ) with column sum of unity..

m
NE

m
Mm Spp �      d

NE
d

Md Spp � (24)

The price of capital is based on the user cost of capital: � ���� rpu CFK

with p
CF

 as the price of investment goods an industry is buying, r as the deflated
benchmark interest rate and d as the aggregate depreciation rate of the capital
stock K. The investment goods price p

CF
 can be defined as a function of the

domestic commodity prices and import prices, given the input structures for

investment, derived from the capital formation matrix for domestic ( d
KB ) and

imported ( m
KB ) investment demand:
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d
K

dm
K

m
CF BpBpp �� (25)

The price of labour is endogenous as well and determined in the labour
market (see section 2.4). The prices of energy types are assumed to be determined
at world markets for energy and are therefore treated as exogenous. A specific
feature of capital is that two prices of this input can be formulated: (i) the ex
post rate of return to K (derived from operating surplus) and (ii) the ex ante rate
of return to K, i.e. the user cost. In economic terms, that represents an imperfect
capital market, which can be in disequilibrium (see: Jorgenson, et al., 2013). It
is assumed that after the base year, this adjustment takes place instantaneously.

All data for the production system are derived from the WIOD (World
Input Output Database) dataset that contains World Input Output Tables
(WIOT) in current and previous year’s prices, Environmental Accounts (EA),
and Socioeconomic Accounts (SEA). For energy the data in physical units (TJ)
by energy type and user (s. above) are used. Energy prices by energy type are
exogenous, like in the household block of the model. The systems of output
price and factor demand equation by industry across the India have been
estimated applying the Seemingly Unrelated Regression (SUR) estimator for
the balanced panel under cross section fixed effects. The estimation results yield
values for the own and cross price elasticity for capital, labour, energy, and
imported intermediates respectively. The average (un-weighted) own price
elasticity of labour as well as of energy is about -0.5, while the own price elasticity
of imported intermediates (-0.75) and capital (-0.95) is considerably higher
(Table 3). For energy intensive industries the own price elasticity of energy is
lower, but the substitution elasticity between energy and capital is slightly higher
than on average. Though, also on average, capital and energy are substitutes
(though in several sectors complementary). The rate of factor bias (equation
(23)) in general is very low, and technical progress slightly energy using and
labour saving. Like in the consumption model the elasticity values have been
used by inverting the elasticity equations ((21), (22) and (23)) together with
factor share data for the India (one economy) to calibrate the production system
and derive parameter values for �

ij
 and �

ti
.

2.2.2.Energy inputs in production and the domestic indirect CO
2
e footprint of

households

The aggregate E comprises four energy industries/commodities. In a second
nest, the factor E is split up into aggregate categories of energy (coal, oil, gas,
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renewable, electricity/heat) in a Translog model. The unit cost function of this

model determines the bundle price of energy, Ep , and the cost shares of the fivee

aggregate energy types:

� � � ��� �����
ji i

iEitEjiijE
i

iEiiE
i

iEiEE ptppppp
,
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2

,,,,0 )log()log()log()log(
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(26)
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ji
iEijEiEiE ,

,
,,,, )log( ��� (27)

In some cases the elasticity of inter-fuel substitution is very close to zero,
but most industries show a value of straying around -0.5. The cross price elasticity
also show negative signs in a large number of industries, indicating
complementarity between fuels.

The set of five energy categories of the model of inter-fuel substitution
needs to be directly linked to two parts of the model: (i) the energy accounts by
industry and detailed fuel category (26) in physical units (TJ) and (ii) the energy
commodities and industries of the use table in monetary units. The first link is
carried out in the same way as described above for households, i.e. by deflating
with a price per unit of physical input (TJ) and applying sub-shares in physical
terms. The second link is carried out by applying changes in the structure of the
five energy inputs to the use structure matrix of the factor E.

The GHG emissions by industry are therefore derived in a similar way as in
the case of households. One main difference is that the GHG emissions by
industry do not only comprise CO

2
 emissions stemming from energy input,

but also CH
4
 and N

2
O emissions (both measured in CO

2
e). These emissions

are directly linked via a (row) vector of fixed emission factors per unit of output
(

GHG,j
) to the gross output in constant prices of the industries. The data

source for these emissions is the Environmental Accounts (EA) of the WIOD
database.

A matrix of energy input in physical units by industry is further constructed,
whose elements represent the energy costs in each industry j, (v

E,ij
E

j
) divided by

given energy prices p
E,i

 and multiplied by the corresponding sub-shares s
eij

,

iE

jijE
eij p

Ev
s

,

,

. Applying the same (row) vector of fixed CO
2
 emission factors per
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unit of energy type (
GHG,e

) as in the consumption block to this energy matrix
and the (row) vector of fixed emission factors per unit of output (

GHG,j
) yields

the (row) vector of domestic CO
2
 emissions by industry 

GHG,j
:

� � qemEemEM d
GHGe

d
eGHG,jGHG, �� (28)

Note that the indirect domestic CO
2
e footprint of households by quintile is

given by the sum of the energy and the output impact of consumption by

quintile �
�
�

�

�

�
�
�

�

�
�
��

q

j

q

j

c

q

c

E

d

d

d

d
jj

. In that case we assume that the change d
q

corresponds to the full consumption of a quintile. Without price changes, the
first term in brackets is just proportional to the second term (output impact of
consumption of a quintile).

The commodity balance for non-energy commodities is defined by applying

the use structure matrices m
NES and d

NES (equation (24)) as well as the diagonal

matrices of the factor shares in equation (20),
DV̂  and 

MV̂ . Multiplying the use

structure matrix with the corresponding factor share matrix and with the column
vector of output in current prices gives the sum of intermediate demand by
commodity. The procedure for energy commodities is the same, with use

structure matrices m
ES and d

ES  (where the column sum over both matrices yields

one), and diagonal matrix
EV̂ . The full commodity balance is given by adding

the column vectors of domestic consumption ( d), capital formation ( d) and
public consumption ( d). Capital formation is endogenous as well and derived
from capital demand by industry in the Translog model, applying the capital
formation matrix (equation (25)). The (column vector) of the domestic output

of commodities in current prices, DDqp , is transformed into the (column vector)

of output in current prices, qpQ , by applying the market shares matrix, 

(industries * commodities) with column sum equal to one:

� � � � ddddd
QEQD

DD ˆˆ cgstexcfcqpSVqpSVqp d
E

d
NE ������� (29)
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DDQ qCpqp � (30)

The final demand categories in ( d, d, d, d and d) comprise energy
and non-energy commodities, are all in current prices and are all – except stock
changes ( d) – endogenous. The export vector d is calibrated with price
elasticity of unity for all commodities and therefore is constant in current prices.
The vector of public consumption d is determined in the public sector block
of the model in order to close the model with a predetermined public deficit.

Imports by commodity are in this model determined by the sum of final
and intermediate demand by commodity. For this purpose, an import shares

matrix for final demand, fM is introduced and applied to the total final demand

matrix,  (consisting of the columns of final demand, , , , , ). The
elements of matrix F are treated as constant and could alternatively be modelled
via the Armington elasticity. Note that the major part of imports (i.e.
intermediate goods) is variable and reacts upon prices. Total imports by
commodities  are in this framework given by imports of final demand, both
energy and non-energy commodities imports and of intermediate inputs

(energy), as well as non-energy (the symbol � represents element by element

multiplication of two matrices.):

� � � � QpSVQpSVIM m
E

m
NE QEQM

ˆˆ ���� FMf (31)

2.3.1.The Imported Indirect CO
2
e footprint of Households

The GHG emissions of imports (in the rest of the world) by import commodity
i are given by a (row) vector of average coefficients of GHG emissions by one

unit of import in India ( m
GHGem ) derived from a MRIO (multi-regional input-

output) model (Arto, et al., 2014). The total imported indirect CO
2
e footprint

of the economy is therefore given as:

IMemEM m
GHG

m
GHG � (32)

The imported indirect CO
2
e footprint of households by quintile is therefore

determined by 
qc

M
d

d
, where d

q
 again stands for the full consumption of a

quintile.. This is the sum of the final demand import effect (captured in fM )
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and the intermediate demand import effect, which is proportional to the output

impact 
qc

q
d

d
.

The labour market is characterized by wage bargaining, formalized in wage
curves by industry. These wage curves are specified as the employee’s gross wage
rate per hour by industry, i.e. w

t
 (1 - t

L
). The labour price (index) of the Translog

model is then defined by adding the employers’ social security contribution to
that. Combining the meta-analysis of Folmer (2019) on the empirical wage
curve literature with a basic wage bargaining model from Boeters and Savard
(2013) gives a specification for the sectoral hourly wages. These functions
describe the responsiveness of hourly wages to labour productivity (industry,
aggregate), consumer prices, hours worked per employee, and the rate of
unemployment. The parameter estimated for labour productivity in the wage
curve therefore is conditional on this impact of working time on hourly wages.

Wage data including hours worked are taken from WIOD Sectoral Accounts
and are complemented by labour force data from The Central Statistics
Office (CSO). The wage equations have been estimated for India panel. The
un-weighted average across industries of the long-run unemployment elasticity
is about 0.06. The long-run productivity elasticity of wages is only about 0.3,
whereas the consumer price elasticity is close to unity (0.8).

The public sector balances close the model and show the main interactions
between households, firms and the general government. Taxes from households
and firms are endogenized via tax rates and the path of the deficit per GDP
share according to Indian stability programs is included as a restriction. Wage
income of households is taxed with social security contributions (tax rates t

wL

and t
L
) and wage income plus operating surplus accruing to households are

taxed with income taxes (tax rate t
Y
). Additionally, households’ gross profit

income is taxed with tax rate t
r
. Taxes less subsidies are not only levied on private

consumption, but also on the other final demand components in purchaser
prices ( , comprising capital formation, changes in stocks, exports, and public
consumption) as well as on gross output. The expenditure side of government
is made up of transfers to households (Tr), public investment (cf

gov
) and public
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consumption (cg). Additionally, the government pays interest with interest rate
r

gov
 on the stock of public debt, D

gov
.

The model is closed by further fixing the public budget constraint, that
defines the future path of government net lending to GDP (p

Y
Y). Linking public

investment with a fixed ratio (w
cf
) to public consumption and introducing the

net lending to GDP constraint, public consumption is then derived as the
endogenous variable that closes the model:

� � � �
� �ttQ,tpp,tpp,N1,

1,,,

ˆ)(

/1

QpfcT �������

�������
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�

ttrthttY

ttLwLtgovtgovytgovcf

ArtHwt

HwttTrDrYpDwcg
(33)

In this analysis, the DYNK model described above has been used for calculating
the carbon footprint of the different household income groups. The total CO

2
e

footprint of a quintile (q) is the sum of the direct CO
2
e footprint, the indirect

domestic CO
2
e footprint, and the indirect imported CO

2
e footprint of this

quintile, where d
q
 corresponds to the full consumption of a quintile:

qq

jGHG,

q

GHG

c

EM

c

EM

EM
c

EM

d

d

d

d

d

d j
m
GHG

qGHG, ���
�

(34)

Note that the first term captures just the direct CO
2
 emissions of the

respective quintile, whereas the other two terms include indirect effects on CO
2

emissions which partly are due to consumption in other quintiles. This is the
main difference between the approach used here and the standard MRIO analysis
of footprint. These induced effects that are taken into account in the second
and third term in equation (34) comprise also endogenous impacts on other
final demand components, partly induced by income, partly by price effects.
The price effects are due to wage reactions to employment effects and their
repercussion on the whole price system. As can be deduced from the results
presented in Table 1, though consumption of each quintile will create disposable
income in the other four quintiles through a production/income multiplier,
the consumption reactions induced by these income effects will be very different.
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The income induced in the bottom income quintile by consumption in the
top income quintile for example converts into consumption with a much higher
MPC than the other way round. From Table 1 we can even conclude that pure
income effects in the top income quintile will not increase consumption
significantly, if no wealth effects are induced for this income group as well.

The footprint is calculated in the following by introducing five exogenous
demand shocks separately into the DYNK model from 2015 to 2025 which are
equivalent to the consumption vector of the five income quintiles, i.e. to d

q
 in

(34). The problem is that all consumption is in principle endogenous in the
model, so that double counting or over-determination might occur. One method
to deal with that would have been to make consumption of each quintile in
each simulation exogenous. One potential problem with this method is that
this changes the model structure and truncates links and feedbacks in the model.
The other method – chosen here – is to subtract the impact of induced
consumption in the quintile that should be fixed exogenously. This subtraction
also is biased in the sense that it does not take into account the indirect and
induced effects from this induced consumption in the same quintile, but bears
the advantage that it does not alter the model structure. Indirect induced CO

2
e

footprint of the same quintile is subtracted by applying the same emission
coefficients per unit of output to the value that results in the model simulation

for induced domestic (
d

indq,cd ) and imported (
m

indq,cd ) consumption. Foror

domestic indirect footprint physical energy coefficients per unit of output have

been calculated, � �-1qEe . The other GHG footprint (CH
4
 and N

2
O) as well as

indirect imported footprint are already directly linked to output and imports,
so the application is straightforward.

� � m
indq,

m
GHG

d
indq,

d
GHG

d
indq,e

d
eGHG,
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(35)

This measure of a corrected CO
2
e footprint from the model simulations is

taken in the following for analyzing the link between income distribution and
footprint. Table 4 shows the aggregate results of the model simulations, namely
the economic and environmental impact of the full consumption vector of
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each quintile in 2025, compared to a baseline scenario. As has been said above
already, in this simulation all final demand categories are endogenous and
together determine the impact on GDP, together with the IO linkages. The
demand shock that corresponds to the consumption vector of each quintile
induces some private consumption. As expected, this effect is larger in the case
of the bottom quintiles and smaller for the top quintiles. For the top 20%
income group this induced consumption effect turns out even negative. The
employment impact and the movement towards full employment, especially in
the case of the 4th and 5th quintiles, induce wage and price reaction, which in
turn affect final demand negatively. In the case of exports this results in a
significant demand reduction. These effects show that the consumption of
households needs to be seen simultaneously with the other demand categories.
Lower consumption in India would ceteris paribus lead to higher price
competitiveness, which would shift the footprint to exports, i.e. to consumption
in the rest of the world.

The impacts of direct CO
2
e footprint of all five income groups in Table 4

add up to the total (100%) of direct household emissions. The impacts of indirect
CO

2
e footprint include the imported footprint and therefore add up to more

than double of the domestic emission from production. From Table 4 one can
already conclude that in these simulations the indirect footprint is important
for all income groups and increases less with income than the direct footprint.
This last result is different from what the literature has found until now. In the
case of the top income group the CO

2
e footprint in India and in the rest of the

world amounts to more than 70% of Indian emissions.

The induced income effects across the other quintiles for the consumption of
each quintile are visible in Table 5. The consumption of bottom quintiles induces
income for higher income groups, but – as could be seen from Table 4 – that does
not induce so much additional consumption. Partly this is also due to price effects
resulting from the consumption demand. The total induced income impact in
Table 5 can be compared with the direct share of the quintiles in disposable
income. This relationship can be interpreted as the income multiplier of each
quintile. For the bottom income group this multiplier more than doubles the
income weight of the group: the 1st quintile has a share of about 6% in disposable
income and induces 5.2% in total disposable income due to its consumption
activity. This multiplier decreases when moving to higher income groups. For the
middle (3rd quintile) it is 15% direct income share to 10% induced income and
for the top it changes to 45% direct vs. about 20% induced.



A New Static Multi-Regional Input Output Model for Household Behavior of India  | 83

The difference in the MPC between income groups and the difference in the
structure of the consumption vectors determines the different structures of
income, consumption and CO

2
e footprint (Figure 1). The bottom income

quintile has a share of 6% in disposable income, 7% in consumption expenditure
and 8% in the CO

2
e footprint, whereas the top income quintile has a share of

45% in disposable income, 42% in consumption expenditure and 37% in the
carbon footprint of all households. Except for the top income group, all other
groups exhibit shares in the CO

2
e footprint which are higher than those in

consumption. This is an indication for a ‘Kuznet effect’, i.e. with higher income
the consumption structure changes in a way that leads to a less than proportional
increase in CO

2
e footprint. This ‘Kuznet effect’ is continuous and rather small

when moving from one quintile to the other between the first and the fourth
quintile and then exhibits a larger shift when moving from the fourth to the
fifth quintile. For the fourth quintile the share in income is 22% and the share
in the CO

2
e footprint is 24%, whereas for the fifth quintile the corresponding

values are 45% (income) and 37% (CO
2
e footprint). That means that within

the fifth quintile some heterogeneity concerning income and CO
2
e footprint

might exist which could only be further analysed by applying more disaggregate
income groups, like for example deciles.

In absolute terms, the average CO
2
e footprint of Indian households

according to our model simulations is 36.8 t CO
2
e per household or 15.7 t

CO
2
e per capita (Figure 2). The bottom income group in India has less than

half of this footprint, namely 6.1 t CO
2
e per capita and the top income group

has less than double (29.2 t CO
2
e per capita). This result also corroborates the

‘Kuznet effect’.

Two important issues discussed in the literature in this context are the relative
importance of direct and indirect footprint and the income elasticity of the
footprint. The objective in both cases is to better understand potential
counterbalancing effects to the level effect that determines the larger footprint
of top income households. These effects could comprise directly and indirectly
less emission intensive consumption structures of rich household groups and a
different income elasticity that compensate for the dominating effect of much
higher consumption levels of these households.

The standard result of the literature is that for bottom income households
direct emissions have a higher share and for top income emissions from heating
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and driving become less important compared to indirect emissions. As Table 6
reveals that does not hold for the simulation results with the DYNK model.
Indirect emissions play a more important role (in relative terms) for bottom
income households. The main reason for this seems to be the CH

4
 emissions

from agricultural products. It can be expected that this effect would even be
magnified, if the agricultural sector would be further disaggregated. The
emissions - either via energy input or directly – are linked to the monetary
value of the agricultural and food industry output. Rich households consume
high quality/high price products in a larger amount, the production of which is
not necessarily more energy/emission intensive than the same product with a
lower quality. The share of indirect CO

2
e footprint amounts to 91% for the

bottom income group and decreases continuously with moving to higher income
groups and finally reaches 86% for the top income group. The order across
income groups is therefore different from the literature, but our values for the
share of indirect emissions lie within the range of the literature which is between
70% and 90% (Parikh et al., 2019 and Weber and Matthews, 2007).

The income elasticity of CO
2
e has been widely researched, partly only with

econometric methods applied to aggregate data, partly by applying econometrics
to results of IO analysis, as in Weber and Matthews (2007). Chakravarty et al.
(2019) define a range of the income elasticity of CO

2
 emissions of 0.8 to 1.

Chancel and Piketty (2015) use income elasticity values for assigning national
emissions to income group and – in response to the values found in the literature
– apply a range between 0.6 and 1.5 with a core value of 0.9, which according
to their review corresponds to the mean value in the literature. It must be noted
that the literature so far (to our knowledge) has derived values for the income
elasticity of CO

2
e either from econometric studies only or from applying

econometrics ex post to the outcome of IO analysis. This methodology does
not integrate the effects of household behavior into the IO analysis that measures
the CO

2
e footprint and therefore does not take into account feedback

mechanisms and interactions between the household sector and the production
structure. In this study the household sector is fully integrated into the IO
structure of the DYNK model and relevant feedbacks between consumption,
other endogenous final demand components and the production structure of
the Indian economy are taken into account. The income elasticity of the CO

2
e

footprint is then calculated on the results of the model simulations. It is defined
as the coefficient of the logarithmic difference of the CO

2
e footprint to the

logarithmic difference of income between two quintiles:



A New Static Multi-Regional Input Output Model for Household Behavior of India  | 85

� � � �
� � � �qq ydyd

dddd

loglog

loglog

1 �

�

�

� qGHG1qGHG cEMcEM
. In Table 6 the values for the first

quintile, i.e. an income elasticity of 1.32 for direct CO
2
e footprint and 0.89 for

the indirect CO
2
e footprint, define the reaction of the footprint when moving

from the average income of the first quintile to the average income of the second
quintile. The income elasticity of the direct CO

2
e footprint is still above unity

for the second quintile and then decreases to a value of 0.69. Again, the shift
when moving from the fourth to the fifth quintile is larger than in all other
cases of moving from one quintile to the next. This can again be seen as an
indication that further disaggregating the top 20% households of the income
distribution could be worthwhile. The results lead us to assume that within this
group the income elasticity might decrease continuously as well and for the last
step of 10% or 5% of the income distribution might be considerably smaller.
The income elasticity of the indirect CO

2
e footprint is always below unity and

decreases from 0.89 for the first quintile to 0.62 for the fourth quintile. As can be
easily seen, these values are in general within the range of the literature except for
direct emissions. It must – though – be noted here that a large part of the literature
does either not differentiate between direct and indirect emissions or not include
direct emissions. This high income elasticity of the direct CO

2
e footprint at the

bottom of the income distribution of households needs to be seen in the context
of the relatively high MPC of low income households for durables (Table 1). The
durable stock enters energy consumption (and thereby direct CO

2
 emissions)

with a unitary elasticity (equations (8) to (10) and Table 2).

Sensitivity, low �
1st quintile 2nd quintile 3rd quintile 4th quintile 5th quintile

dlog(C dur ) 0.45 *** 0.38 *** 0.30 ** 0.21 0.14

(0.15) (0.16) (0.16) (0.16) (0.16)
dlog(C nondur ) 0.94 *** 0.76 *** 0.58 *** 0.38 *** -0.03

(0.41) (0.20) (0.15) (0.12) (0.13)
Sensitivity, high �

1st quintile 2nd quintile 3rd quintile 4th quintile 5th quintile
dlog(C dur ) 0.44 *** 0.40 ** 0.33 *** 0.26 ** 0.20

(0.13) (0.14) (0.14) (0.14) (0.14)
dlog(C nondur ) 1.02 *** 0.86 *** 0.69 *** 0.49 *** 0.09

(0.37) (0.18) (0.14) (0.12) (0.09)

*, **, and *** indicate significance at the 10%, 5% , and 1% level, respectively
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Nondurable own price      expenditure elasticity
Consumption elasticity Time series Cross section

Food -0.14 0.85 0.61
Clothing -0.64 1.04 1.28

Furniture/equipment -1.06 1.11 1.46
Health -0.83 0.98 1.20

Communication -0.89 0.96 0.68
Recreation/accomodation -0.50 1.08 1.27

Financial Services -0.94 1.33 1.00
Other -0.68 1.09 1.00
Energy own price durable stock

Consumption elasticity elasticity
Transport fuel -0.77 1.00

Heating -0.87 1.00
Electricity -0.81 1.00

own price cross price rate of
Production elasticity elasticity, E/K factor bias

K, all industries -0.95 0.00
L, all industries -0.51 -0.01
E, all industries -0.53 0.02

E, energy intensive -0.37 0.20 0.00
all industries 0.15

M(m) -0.75 0.02
long-run

Wage curve elasticity 
Consumer price 0.82

Productivity 0.27
Unemployment rate -0.06

More insights in what might be driving the small ‘Kuznet effect’ in our
results can be gained by looking into the commodity structure of consumption
on the one hand and the indirect CO

2
e footprint of quintiles on the other hand

(Table 7). As can be seen, rich households exhibit considerably lower shares of
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1st quintile 2nd quintile 3rd quintile 4th quintile 5th quintile

GDP, const. prices 2.7 3.6 4.0 4.2 4.5
Private Consumption, const. prices 0.6 0.6 0.5 0.2 -0.2

Capital formation, const. prices 0.0 0.0 0.1 0.1 0.1
Exports, const. prices -4.6 -7.7 -10.4 -13.7 -21.1

Employment (persons) 4.9 7.2 8.7 10.3 13.7
Unemployment rate (% points) -4.2 -6.3 -7.7 -9.0 -10.5

GHG emissions, direct 5.4 11.5 17.7 24.8 40.5
GHG emissions, indirect 18.6 31.1 41.3 53.6 83.6

GHG emissions, total 15.3 26.2 35.4 46.5 72.9

1st quintile 2nd quintile 3rd quintile 4th quintile 5th quintile
Total 5.2 8.1 10.4 12.9 19.6

1st quintile 5.7 7.5 9.7 15.4
2nd quintile 4.6 9.3 11.7 18.2
3rd quintile 4.9 7.7 12.3 19.1
4th quintile 5.2 8.1 10.3 19.8
5th quintile 5.7 8.8 11.2 13.9
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1st quintile 2nd quintile 3rd quintile 4th quintile 5th quintile 
Shares (%)

Direct 8.7 10.9 12.5 13.3 13.8
Indirect 91.3 89.1 87.5 86.7 86.2

Income Elasticity
Direct 1.32 1.18 0.95 0.69

Indirect 0.89 0.78 0.74 0.62

1st quintile 2nd quintile 3rd quintile 4th quintile 5th quintile 
Agriculture, hunting and related services

share in consumption 3.07 2.92 2.71 2.48 2.02
share in indirect emissions 8.02 7.58 7.17 6.76 6.10

Food products and beverages
share in consumption 15.85 14.87 13.59 12.14 9.38

share in indirect emissions 4.31 4.12 3.95 3.80 3.56
Coke, refined petroleum products

share in consumption 4.79 5.37 5.88 6.23 5.88
share in indirect emissions 3.73 3.71 3.76 3.77 3.68

Chemicals, chemical products 
share in consumption 2.00 2.33 2.43 2.56 3.01

share in indirect emissions 8.63 8.66 8.68 8.73 9.03
Radio, television and communication equipment

share in consumption 0.56 0.68 0.73 0.79 0.85
share in indirect emissions 3.49 3.52 3.53 3.55 3.68

Motor vehicles, trailers
share in consumption 2.15 2.85 3.54 3.99 5.71

share in indirect emissions 2.04 2.08 2.13 2.17 2.23
Electrical energy, gas, steam and hot water

share in consumption 2.37 3.25 3.56 3.87 3.76
share in indirect emissions 11.93 12.86 13.05 13.23 12.73
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food and agricultural products in the consumption structure, which are not
fully compensated by the higher shares of other emission intensive products
(gasoline/diesel, electricity, air transport) in their consumption basket.

The objective of this study is fully integrating household behavior of five
household income groups into a hybrid model (between CGE and econometric
IO) and deriving the CO

2
e footprint of different income groups from model

simulation results. The CO
2
e footprint calculated not only takes into account

endogenous intermediate demand like in traditional static IO analysis, but also
induced consumption in the other groups and other endogenous final demand,
as well as wage and price effects due to the demand pull.

The direct and indirect CO
2
e footprint of the five groups exhibit several

aspects of a small ‘Kuznets effect’: the share of the top income group in income
(45%) is much larger than its share in the CO

2
e footprint (37%) and vice versa

for the bottom income group (6% in income and 8% in footprint). In per
capita terms the bottom income CO

2
e footprint is more than 2.5 times smaller

than the average per capita footprint (15.7 t CO
2
e), whereas the top income

footprint is less than twice as large. There is a strong indication in all results
that the top 20% income group should be further disaggregated, as one observes
a significant shift in all results between the fourth and the fifth quintile. The
‘Kuznets effect’ is mainly driven by other indirect GHG emissions (CH

4
) linked

to agricultural production and the relatively high share of food consumption at
the bottom of the income distribution. This effect would even be magnified, if
the agricultural sector would be further disaggregated. Rich households consume
agricultural products with higher prices, but not necessarily with higher energy/
emission intensity.

There are several aspects in the results that underline the importance of the
general philosophy in this paper of integrating household behavior consistently
into the production (IO) structure. The different marginal propensity of
consumption for nondurable and durable goods plays an important role in
explaining the differences in income vs. CO

2
e footprint shares as well as in the

heterogeneity of the income elasticity of the direct CO
2
e footprint. Another

important aspect is the difference of consumption in other income groups
induced by the consumption of each income group.

Several results of this analysis are different from what the literature has
found by applying aggregate econometric analysis or only static IO analysis.
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One applies to the share of indirect emissions by income groups and the other
to the income elasticity of the CO

2
e footprint.

We find – in contrast to the standard result of the literature – that indirect
emissions play a more important role (in relative terms) for bottom income
households. The main reason for this seems to be the CH

4
 emissions from

agricultural products. The income elasticity of the direct and indirect CO
2
e

footprint in this study takes into account macroeconomic (or general equilibrium)
feedbacks and therefore is not limited to the ceteris paribus condition that needs
to hold for the elasticity values estimated in the literature. It is calculated on the
results of the model simulations and can be interpreted as the relative reaction of
the footprint when moving from the average income of one quintile to the next.
The income elasticity of the direct CO

2
e footprint is 1.32 for the first quintile

and still above unity for the second quintile and then decreases to a value of 0.69.
The income elasticity of the indirect CO

2
e footprint is always below unity and

decreases from 0.89 for the first quintile to 0.62 for the fourth quintile.
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